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Abstract

We analyze a simple dynamic durable good oligopoly model where sellers are capacity constrained.
Two incumbent sellers and potential entrants choose their capacities at the start of the game. We
solve for equilibrium capacity choices and the (necessarily mixed) pricing strategies. In equilibrium,
the buyer splits the order with positive probability to preserve competition; thus it is possible that
a high and low price seller both have sales. Sellers command a rent above the value of unmet
demand by the other seller. A buyer would bene�t from either a commitment not to buy in the
future or by hiring an agent with instructions to buy always from the lowest priced seller.

JEL numbers: D4, L1
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1 Introduction

In many durable goods markets, sellers who have market power and intertemporal capacity con-

straints face strategic buyers who make purchases over time. There may be a single buyer, as in

the case of a government that purchases military equipment or awards construction projects, such

as for bridges, roads, or airports, and chooses among the o¤ers of a few large available suppliers.

Or, there may be a small number of large buyers, as with companies that order aircraft or large

ships, where the supply could come only from a small number of large, specialized companies.1 The

capacity constraint may be due to the production technology: a construction company undertaking

to build a highway today may not have su¢ ciently many engineers or machines available to compete

for an additional large project tomorrow, given that the projects take a long time to complete; a

similar constraint is faced by an aircraft builder that accepts an order for a large number of aircraft.

Or, the capacity constraint may simply correspond to the �ow of a resource that cannot exceed

some level: thus, if a supplier receives a large order today, he will be constrained on what he can

o¤er in the future. This e¤ect may be indirect, as when the resource is a necessary ingredient for

a �nal product (often the case with pharmaceuticals). More generally, the above cases suggest a

need to study dynamic oligopolistic price competition for durable goods with capacity constraints

and strategic buyers.

In this paper, we show that the preservation of future competition provides an incentive for a

strategic buyer to split early purchase orders. We also demonstrate that the option to split orders

leaves a buyer worse o¤ in equilibrium. We illustrate these results with a simple dynamic model.

Two incumbent sellers choose capacities and a large number of potential entrants choose their

capacities after the incumbents. Capacity determines how much a �rm can produce over the entire

game. Sellers then set �rst-period prices, and the buyer decides how many units of the durable

good to purchase from each seller. In the second period, given the remaining capacity of each �rm,

1In an empirical study of the defense market, Greer and Liao (1986, p. 1259) �nd that �the aerospace
industry�s capacity utilization rate, which measures propensity to compete, has a signi�cant impact on the
variation of defense business pro�tability and on the cost of acquiring major weapon systems under dual-
source competition�. Ghemawat and McGahan (1998) show that order backlogs, that is, the inability of
manufacturers to supply products at the time the buyers want them, is important in the U.S. large turbine
generator industry and a¤ects �rms�strategic pricing decisions. Likewise, production may take signi�cant
time intervals in several industries: e.g., for large cruise ships, it can take three years to build a single ship
and an additional two years or more to produce another one of the same type. Jofre-Bonet and Pesendorfer
(2003) estimate a dynamic procurement auction game for highway construction in California - they �nd
that, due to contractors�capacity constraints, previously won uncompleted contracts reduce the probability
of winning further contracts.
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the sellers again set prices and the buyer makes a purchasing decision. Demand has a very simple

structure. The buyer has value for three units in total, with the �rst two having a current and a

future utility while the third only has utility in the second period. This is the simplest structure

that allows for future demand and the possibility of order splitting in the �rst period.

Our main results are as follows. First, entry is always blockaded - the incumbent sellers choose

capacities such that there is no pro�table entry. Second, given these capacity levels, a pure strategy

subgame perfect equilibrium in prices fails to exist. This is due to a combination of two phenomena.

On the one hand, a buyer has an incentive to split his order in the �rst period if the prices are

close, in order to keep strong competition in the second period. This in turn creates an incentive for

sellers to raise their prices. On the other hand, if prices are too �high,�each seller has a unilateral

incentive to lower his price, and sell all of his capacity. We solve for the mixed strategy equilibrium

and show that it has two important properties. The buyer has a strict incentive to split the order

with positive probability: when the realized equilibrium prices do not di¤er too much, the buyer

chooses to buy in the �rst period from both the high price seller and the low price seller. Further,

we show that the sellers make a positive economic rent above the pro�ts of serving the buyer�s

residual demand, if the other seller sold all of his units.

Three implications then follow from the existence of positive economic rents for the sellers.

First, the buyer would like to commit to make no purchases in the second period, so as to induce

strong price competition in the �rst period. That is, the buyer is hurt when competition takes

place over two periods rather than in one. This result implies that a buyer would prefer not to

negotiate frequently with sellers, placing new orders as their needs arise over time but, instead,

negotiate at one point in time a contract that covers all possible future needs.2 Second, a buyer

has the incentive to commit to myopic behavior. In other words, the buyer is hurt by his ability

to behave strategically over the two periods and would bene�t from a commitment to buy always

from the lowest priced �rm.3 Finally, we note that the buyer has an incentive to vertically integrate

with one of the suppliers.

2For example, in 2002 EasyJet signed a contract with Airbus for 120 new A319 aircraft and also for the
option to buy, in addition, up to an equal number of such aircraft for (about) the same price. While the
agreed aircraft were being gradually delivered, in 2006 EasyJet exercised the option and placed an order for
an additional 20 units to account for projected growth, with delivery set between then and 2008. Similarly,
an order was placed in 2006 by GE Commercial Aviation to buy 30 Next Generation 737s from Boeing and
also to agree to an option for an additional 30 such aircraft.

3For example, many government procurement rules do not allow purchasing o¢ cers to exercise discretion.
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Our study of competition with a strategic buyer and two sellers who face dynamic (intertempo-

ral) capacity constraints is broadly related to two literatures. The �rst is the literature on capacity-

constrained competition. Many of these papers identify the �nonexistence�of a price equilibrium

(Dasgupta and Maskin (1986), Osborne and Pitchik (1986), Gehrig (1990), and others). Several

other papers have studied the choice of capacity in anticipation of oligopoly competition and the

e¤ects of capacity constraints on collusion; see, for example, Kreps and Scheinkman (1983), Lamb-

son (1987), Allen, Deneckere, Faith, and Kovenock (2000), and Compte, Jenny and Rey (2002).

In this literature capacity constraints operate on a period-by-period basis. Dynamic capacity con-

straints, the focus of our paper, have received much less attention in the literature. Griesmer and

Shubik (1963) and Dudey (1992) study games where capacity-constrained duopolists face a �nite

sequence of identical buyers with unit demands. Besanko and Doraszelski (2004) study a dynamic

capacity accumulation game with price competition. Ghemawat (1997, ch.2) and Ghemawat and

McGaham (1998) characterize mixed strategy equilibria in a two-period duopoly (with one seller

having initially half of the capacity of the other). Garcia, Reitzes, and Stacchetti (2001) exam-

ine hydro-electric plants that can use their capacity (water reservoir) or save it for use in a later

period. Bhaskar (2001) shows that, by acting strategically, a buyer can increase his net surplus

when sellers are capacity constrained. In his model, however, there is a single buyer who has unit

demand in each period for a perishable good, and so �order splitting�cannot be studied.4 Dudey

(2006) presents conditions such that a Bertrand outcome is consistent with capacities chosen by the

sellers before the buyers arrive. In the above mentioned papers, demand is modeled as static and

independent across periods. The key distinguishing feature of our work is that the buyer (and not

just the sellers) are strategic and the evolution of capacities across periods depends on the actions

of both sides of the market.

Second, our work is related to the procurement literature where both buyers and sellers are

strategic. Of particular relevance is the work that examines a buyer who in�uences the degree of

competition among (potential) suppliers, as in the context of �split awards�and �dual-sourcing.�

Anton and Yao (1989 and 1992) consider models where a buyer can buy either from one seller

or split his order and buy from two sellers, who have strictly convex cost functions. They �nd

conditions under which a buyer will split his order and characterize seemingly collusive equilibria.

4The buyer can chose not to buy in a given period, thus receiving zero value in that period, but obtaining
future units at lower prices. The buyer in our model views the good as durable and may wish to split the
order, possibly buying from the more expensive supplier in the �rst period. Our focus and set of results are,
thus, quite di¤erent.
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Inderst (2006) examines a model similar to the work of Anton and Yao but with multiple buyers.

He demonstrates that having multiple buyers increases the incentive to split their orders across

sellers. A mechanism approach to dual-sourcing is o¤ered by Riordan and Sappington (1987). We

depart from this literature in two important directions. First, the intertemporal links are at the

heart of our analysis: the key issue is how purchasing decisions today a¤ect the sellers�remaining

capacities tomorrow. In contrast, the work mentioned above focuses on static issues and relies

on cost asymmetries. Second, strategic purchases from competing sellers and a single buyer in a

dynamic setting are also studied under �learning curve�e¤ects; see e.g. Cabral and Riordan (1994)

and Lewis and Yildirim (2002). In our case, by buying from one seller a buyer makes that seller

less competitive in the following period. In the learning curve case, that e¤ect is reversed, due to

unit cost decreases.

The remainder of the paper is organized as follows. The model is set up in Section 2. In section

3 we derive the equilibrium and discuss a number of implications. We conclude in Section 4. Proofs

are relegated to an Appendix.

2 The model

The buyer and sellers interact over two periods. There are two incumbents and many potential

entrants on the seller side of the market. The product is perfectly homogeneous and perfectly

durable over the lifetime of the model. All players have a common discount factor �:

The buyer values each of the �rst two units at V in each period that he has the unit and a

third unit at V3 in only period 2. Thus, for each of the �rst two units purchased in period 1, the

buyer gets consumption value V in each period. We assume that V � V3 > 0.5

At the start of the game the incumbent sellers simultaneously choose their capacities. The

potential entrants observe the incumbents�capacity choices and then simultaneously choose whether

to enter and their capacity choice if they enter. We assume that the cost of capacity for any seller

is small, ", but positive; throughout the paper, all pro�t levels are gross of the capacity costs. The

marginal cost of production is 0. The capacity choice is the maximum that the seller can produce

5The maximum discounted gross value that a buyer could obtain over both periods is equal to 2V (1 +
�) + �V3. Our speci�cation is consistent with growing demand. Note that, in general, the �rst and second
units could have di¤erent values (say V1 � V2). Also, we could allow the demand of the third unit to be
random. It is straightforward to introduce either of these cases in the model, with no qualitatitive change
in the results, but at the cost of some additional notation.
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over the two periods. Thus, each seller has capacity at the beginning of the second period equal

to initial capacity less the units sold in the �rst period. In each period, each of the sellers sets a

per unit price for his available units of capacity. The buyer chooses how many units to purchase

from each seller at the price speci�ed, as long as the seller has enough capacity. Provisionally, we

assume that the capacity choice at the start of the game for each incumbent seller is equal to 2 and

that entry is blockaded. Later, we demonstrate that when the third unit has signi�cant economic

value, these are the equilibrium capacity choices. We assume that sellers commit to their prices

one period at a time and that all information is common knowledge and symmetric. We solve for

subgame perfect equilibria of the game.

Let us now discuss why we have adopted this modelling strategy. We analyze a dynamic bilateral

oligopoly game, where all players are �large�and are therefore expected to have market power. In

such cases, one wants the model to re�ect the possibility that each player can exercise some market

power. By allowing the sellers to make price o¤ers and the buyer to choose how many units to

accept from each seller, all players have market power in our model. It follows that quantities and

prices evolve from the �rst period to the second jointly determined by the strategies adopted by

the buyer and the sellers. If, instead, we allowed the buyer to make price o¤ers, then the buyer

would have all the market power and the price would be zero.6 In fact, anticipating such a scenario,

sellers would not be willing to pay even an in�nitesimal entry cost and, thus, such a market would

never open. There are further advantages of this modeling strategy. First, with sellers making

o¤ers, our results are more easily comparable with other papers in the literature. Further, there

may be agency (moral hazard) considerations that contribute to why in practice we typically see

the sellers making o¤ers.7

The interpretation of the timing of the game is immediate in case the sellers�supply comes from

an existing stock (either units that have been produced at an earlier time, or some natural resource

6Inderst (2006) demonstrates that giving multiple buyers the right to make o¤ers that has a signi�cant
impact on results due to the convexity of the sellers�cost functions. In our model of constant marginal costs,
where a seller has capacity in place, the buyer will always buy a unit at a price of 0 if the buyer can make
o¤ers.

7In general we see the sellers making o¤ers, even with a single buyer, as when the Department of Defense
(DOD) is purchasing weapon systems. The DOD may do this to solve possible agency problems between
the agent running the procurement auction and the DOD. If an agent can propose o¤ers, it is much easier
for sellers to bribe the agent to make high o¤ers than if sellers make o¤ers, which can be observed by the
regulator. This is because the sellers can bribe the agent to make high o¤ers to each of them, but competition
between the sellers would give each seller an incentive to submit a low bid to make all the sales and it would
be quite di¢ cult for the agent to accept one o¤er that was much higher than another.
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set
prices
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production of
units ordered in
period 2  begins

Figure 1: Timing

that the �rm controls). One simple way to understand the timing in the case where production

takes place in every period is illustrated in Figure 1. The idea here is that actual production takes

time. Thus, orders placed in period 1 are not completed before period two orders arrive. Since

each seller has the capacity to work only on a limited number of units at a time, units ordered

in period one restrict how many units could be ordered in period two. In such a case, since our

interpretation involves delivery after the current period, the buyer�s values speci�ed in the game

should be understood as the present values for these future deliveries (and the interpretation of

discounting should also be accordingly adjusted).

3 Equilibrium

We are constructing a subgame perfect equilibrium and, thus, we work backwards from period 2.

After �nding the period 2 subgame outcomes, we derive buyer demand and �nd the equilibrium

pricing strategies for period 1. Next, we identify possible buyer actions to modify the competition

and limit seller rents. Finally, we examine equilibrium capacity choices by sellers.
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3.1 Second period

There are several cases to consider, depending on how many units the buyer purchased from each

seller in period 1. Let B denote the remaining units of buyer demand, and let Ci denote a seller

with i units of remaining capacity. If the buyer purchased 3 units in period 1, the game is over as

there is no remaining demand in period 2. The substantive subgame cases are:

Buyer purchased two units in period 1 . If the buyer bought a unit from each of the sellers in

period 1, then the price in period 2 is 0 due to Bertrand competition; each of the C1 sellers earns

a pro�t of 0. If the buyer purchased 2 units from the same �rm, then the other �rm becomes a

monopolist in period 2 and charges V3; the period 2 equilibrium pro�t of the C2 seller is V3 and, of

course, the C0 seller earns 0.

Buyer purchased one unit in period 1 . In this case, the buyer has demand for B = 2 units, and

there is one C2 seller and one C1 seller. There is no pure strategy equilibrium in this case. There

exists a mixed strategy equilibrium in which seller C2�s pro�t is V3 and seller C1�s pro�t is V3=2,

the support of the prices is from V3=2 to V3, and the price distributions are F1(p) = 2� V3
p for seller

C1, and F2(p) = 1� V3
2p for p < V3 with a mass point of

1
2 at p = V3 for seller C2.

Buyer purchased no units in period 1 . Each seller enters period 2 with 2 units of capacity,

while the buyer has demand for 3 units. Again, there is no pure strategy equilibrium. In the

mixed strategy equilibrium, each seller�s pro�t is V3, the price support is from V3=2 to V3, and the

distribution is F (p) = 2� V3
p for each seller.

Period 2 outcomes highlight two key insights that run throughout the paper (please see the

Appendix for veri�cation of equilibrium in the subgames). The �rst concerns the calculation of the

equilibrium sellers�pro�ts and the second regards the ranking of the sellers�price distributions. Let

CL and CH , where L � H, denote the low and high capacity seller, respectively. If CL < B, then

seller CH can guarantee himself a payo¤ of at least V3(B � CL) since, no matter what the other

seller does, he can always charge V3 and sell at least B � CL units. This is seller CH�s security

pro�t level. This is because seller CL can supply only up to CL of the B units of buyer demand,

and the buyer is willing to pay at least V3. Seller CH�s security pro�t puts a lower bound on the

price o¤ered in period 2. Given seller CH can sell at most B units (that is, the total demand), he

will never charge a price below V3(B �CL)=B, since a lower price would lead to a payo¤ less than

his security pro�t. Since seller CH would never charge a price below V3(B �CL)=B; this level also

puts a lower bound on the price seller CL would charge and, as that seller has CL units he could
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possibly sell, his security pro�t is CL
V3(B�CL)

B .8 Competition between the two sellers �xes their

pro�ts at their respective security levels.

The second insight deals with the incentives for aggressive pricing. We �nd that the seller CH

will price less aggressively than seller CL in period 2. Seller CH knows that he will make sales even if

he is the highest price seller, while seller CL makes no sales if he is the highest price seller. So, seller

CL always has an incentive to price more aggressively. More precisely, the FH price distribution

�rst-order stochastically dominates FL. This general property has important implications for the

quantities sold and the market shares over the entire game.

The equilibrium payo¤s in the second period subgames are summarized in Table 1:

Table 1: Period 2 incremental payo¤s for (2; 2) capacity game
Period 2 (B;H;L) con�guration Buyer Payo¤ Seller CH payo¤ Seller CL payo¤

(3; 2; 2) 2V � V3 V3 V3
(2; 2; 1) V � V3=2 V3 V3=2

(1; 2; 0) 0 V3 0

(1; 1; 1) V3 0 0

:

3.2 First period

We use Figure 2 to summarize the buyer�s purchasing behavior in period 1. In response to any

pair of prices, the buyer maximizes net surplus, including period 2 consequences, by choosing how

many units to purchase from each seller. The four regions in Figure 2 correspond to the buyer�s

optimal choice. First, in the no purchase region, both prices are su¢ ciently high that the buyer

optimally waits until period 2 for a payo¤ of �[2V + V3 � 2V3], from Table 1. De�ning � � �V3

as the discounted value of unit 3, this buyer payo¤ becomes 2�V ��. To see that this dominates

buying 1 or 2 units in period 1, suppose that p1 is the lower of the two prices. Employing Table 1,

we see that splitting has a buyer payo¤ of 2V (1 + �) +�� p1 � p2, and the comparison reduces to

2(V +�) < p1+p2, which corresponds to the line segment between the no purchase and split regions.

Similarly, waiting dominates buying 2 units from the lower price seller when the low price is above

V +�=2, represented by the vertical (and horizontal) line segments dividing the no purchase and

8Note that while C V3(B�C)
B is not strictly speaking the �security� pro�t of the low-capacity seller, it

becomes that after one round of elimination of strictly dominated strategies. More generally, for demand
values V1 � V2 � ::: � VB , seller CH has the monopoly option on the residual demand curve and the security
pro�t level is maxfVB(B � CL); VB�1(B � CL � 1); :::; VB�CL+1(1)g. This distinction does not matter for
subgames of the initial (2; 2) capacity con�guration but it does arise for other con�guration cases; see the
Appendix for details on these other cases.
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Figure 2: Period 1 demand for (2,2) capacity

monopoly regions. Thus, whenever p1 is to the left of the line segment, the buyer will purchase 2

units, and the comparison is then between monopoly for seller 1 and splitting. The buyer will prefer

to split whenever the price di¤erence is less than �, the buyer�s savings from Bertrand competition

following a split. Finally, note that indi¤erence holds for prices on the boundary lines.9

There is no pure strategy equilibrium in period 1 with this demand structure, a common feature

of games with capacity constraints. There is clearly no pure strategy equilibrium with no buyer

purchases in period 1. Such a demand outcome requires high prices and either seller can pro�tably

undercut and sell 2 units. For example, even at p1 = p2 = V +�, the lowest prices where the buyer

would choose to make no purchase, a price cut to any p̂ < V will induce the buyer to purchase 2

units from the deviating seller and, with p̂ close to V , this will increase his payo¤ from � to 2p̂.

As the demand structure in Figure 2 illustrates, it is easy to rule out candidate equilibria where

the buyer only purchases 1 unit. The substantive case is where the buyer purchases 2 units. The

buyer�s incentive is to split when prices are within � of each other. But, if prices are within �

of each other then each seller is able to raise his price slightly and still sell a unit. Thus, prices

9Purchasing more than 2 units is dominated. If both prices are positive, buying 2 units via a split strictly
dominates buying 3, since the ensuing Bertrand competition yields a price of 0 for the 3rd unit in period 2.
When pi = 0 and pj > �, purchasing 2 units from i is optimal and strictly dominates purchasing 3 units.
If 0 � pj � �, splitting and buying 3 units are both optimal choices. Of course, buying 3 units always
dominates buying more than 3 units since there is no value for a fourth unit. Finally, on the monopoly-no
purchase boundary, the buyer is also indi¤erent between buying 1 unit. In all other cases, buying 1 unit is
not optimal.
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must be at least � apart. If the gap is greater than �, then the buyer will buy both units from

the low price seller. In this case, however, the low price seller can raise his price and still sell two

units. The only remaining possibility is a price di¤erence equal to �. The buyer will either buy two

units from the low price seller, split his order, or mix between the two options. No matter how the

buyer�s indi¤erence is resolved, there is always a pro�table deviation for at least one seller. Thus,

Lemma 1. There is no pure strategy equilibrium in the monopsony model.

Now, we present our results on equilibrium for period 1.

Proposition 1. There exists a mixed strategy equilibrium for period 1 in which the outcome

is e¢ cient: the buyer purchases 2 units with probability 1. The distribution of prices is symmetric

and given by

i) For � < �� �
�

2
3+
p
5

�
V ,

F (p) =

8<:
1� (� ��)=p for p � p � p+�

2� �=(p��) for p+� � p � �p

where p =
�
V
�� � 1

�
� and p = p+ 2�

ii) For � � ��,

F (p) =

8>>>>>>>><>>>>>>>>:

1� p=p for p � p � �p��

1��=p for �p�� � p � p+�

2� (p+�)=(p��) for p+� � p < �p

1 for p = �p

where p =
p
V� and �p = V +�:

iii) Equilibrium payo¤s are � = p+� for each seller and 2V (1 + �)� 2p�� for the buyer.

Several fundamental economic properties hold in the equilibrium across the full parameter range

for �, the value for the third unit. First, the equilibrium is e¢ cient because 2 units are purchased

for any realized prices. Since �p � V + �, it must be that p1 + p2 does not exceed the threshold

of 2(V + �) for purchasing 2 units. Second, the expected seller payo¤ is always p + �. This is

an important property of the equilibrium incentive structure. By charging p + �, the seller is

guaranteed a sale of exactly one unit. By construction, no price will undercut by more than �, and

there is no chance of not making a sale. At the same time, the rival seller never charges � more

than p+�, so there is no chance of a monopoly outcome at p+�. This is re�ected by the spread
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of the price support, p�p, which never exceeds 2�. Thus, with a sale guaranteed, pro�t is at least

p+�. Can pro�t be any larger? If so, then the price distribution is �at within a neighborhood of

p+�. As a result, the price p is strictly dominated, since there is no change in sales for a small price

increase implying that the price distribution is also �at in a neighborhood of p, which contradicts

the de�nition of p. Thus, seller pro�t is p+�. The price distribution is then constructed so that

every price has an expected payo¤ of p+�.

Proposition 1 allows us to assess the impact of dynamic price competition on the buyer and

seller sides of the market. The static price competition benchmark, where all purchases must occur

in period 1, has the same price outcome as the period 2 subgame following no purchases in period

1. Thus, the outcome is e¢ cient, static expected pro�ts are �, and the buyer expected surplus

is 2V (1 + �) � �. Comparing this outcome to that for dynamic price competition, we see that

the buyer su¤ers while the sellers gain. In the dynamic game, the outcome is e¢ cient and social

surplus is unchanged from the static game. At p+�, however, seller pro�ts are strictly higher in

the dynamic game. By this measure, competition is less intense in the dynamic game. Intuitively,

a buyer splits purchases in the dynamic game even though this increases current expenditures more

than buying 2 units from the lowest priced seller. The value to the buyer is the preservation of

competition for period 2. The less intense price competition in the dynamic game is associated not

only with higher pro�ts, but also with non-overlapping price supports as p in the dynamic game is

strictly above �, the upper limit of the price support in the static game. With an e¢ cient outcome,

but higher seller pro�ts, the expected net surplus of the buyer is necessarily lower in the dynamic

game. Thus,

Proposition 2. In equilibrium, the expected pro�t of each seller is greater than �, the pro�t

level in the static game. In an e¢ cient equilibrium, the buyer�s expected payments in the dynamic

game are greater those in the static game.

While the economic structure in terms of e¢ ciency, payo¤s relative to the support, and dynamic

versus static comparisons do not vary with the value of the buyer units, � and V , the quantitative

dimensions of the equilibrium price distribution do. The required changes in the distribution

commence when � crosses a threshold relative to V . For � below the threshold, no part of the

equilibrium depends on V . The price spread (p�p) is always 2� and equilibrium prices are strictly

below the no purchase demand region (V + �). The distribution F is continuous and atomless,

but it has a kink at p + �. See Figure 3 for details. For � above the threshold, the equilibrium

distribution depends on V . Now, the price spread is less than 2�; and the p is equal to V + �.
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Furthermore, the price distribution rises smoothly at low prices, has a gap, then rises smoothly

again, and then has an atom at p = V +�. When � is large, the form of the distribution for low

� creates a pro�table deviation to prices just below p. To maintain incentives, it is necessary to

compress the price spread from 2�. But this implies that p � � is now below p + �, and prices

between these values are strictly dominated since demand is always in the split region for any price

o¤ered by the other �rm (see Figure 4). As a result, the distribution has a gap in this region. In

turn, an atom is required at p in order for the highest price before the gap, p � �, to yield the

equilibrium pro�t p+�. Intuitively, the �missing mass�from the gap is redistributed as an atom

at p so that low prices yield a su¢ ciently high probability of a monopoly outcome.10

3.3 Possible actions by the buyer to reduce sellers�rents

As we saw above (Proposition 2), in the equilibrium each seller�s pro�t exceeds �: This is an

important property and we now discuss some of its implications. We illustrate three strategies that

the buyer can use to reduce his expected payments and still preserve e¢ ciency. First, the buyer

bene�ts if he can commit to make all his purchases at once, e¤ectively collapsing the game into

a one-shot interaction. Second, we show that the buyer has an incentive to commit to (myopic)

period-by-period optimization. Third, we demonstrate that the buyer will bene�t by acquiring one

of the sellers.

These three observations help to demonstrate the fundamental force underlying the equilibrium:

due to strategic considerations, the buyer does not always purchase from the lowest price seller when

he plans to make further purchases, giving sellers the incentive to raise their prices above the static

equilibrium level. As the buyer is �hurt�by acting strategically across the two periods of the game,

we show that there are actions he can take (e.g. through some unilateral policy commitments) to

e¤ectively change the game. In cases when such actions are possible, we thus identify reasons why

the buyer would like to choose them. Our �rst observation is:

Corollary 1 The buyer would bene�t from a commitment not to purchase any units in period 2.

The equilibrium seller pro�t level described in Proposition 2 is larger than in the static equi-

10We have assumed 0 < � < V . In the limit, as �! 0, the mixed strategy equilibrium converges to pure
Bertrand competition for 2 units of demand (both prices are 0). As � ! V , the distribution collapes to
p = p = 2V . Furthermore, for � above a threshold ��� > ��, we are able to construct ine¢ cient equilibria,
where the demand outcome is either a split or no purchase. Seller payo¤s are less than the pro�ts for the
equilibrium in Proposition 1, but above the static benchmark; see Appendix for details.
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librium (when the buyer commits to buying all goods in period 1). Recall that the static outcome

coincides with the period 2 equilibrium following no sales in period 1, where each seller earns V3

and the buyer purchases 3 units. Viewed as a static game, this becomes an e¢ cient outcome (no

discounting). Thus, both outcomes are e¢ cient but the static game has lower seller pro�ts and

hence a larger residual of the social surplus remains for the buyer.

The behavior described in Corollary 1 would require, of course, some vehicle of commitment

that would make future purchases not possible. This is an interesting result and can be viewed

as consistent with the practice of airliners placing a large order that often involves the option to

purchase some aircraft in the future at the same price for �rm orders placed now. Such behavior is

sometimes attributed to economies of scale �our analysis shows that such behavior may emerge for

reasons purely having to do with how sellers compete with one another. Our second observation is:

Corollary 2 The buyer would bene�t from a commitment to myopic behavior under which pur-

chases are made on the basis of static optimization (in each period).

Suppose that the buyer could commit to myopic behavior. That is, for period 1 purchases, the

buyer only values the current units (2 units, each valued at V (1+ �)). Of course, period 2 purchase

decisions are unchanged. As a result, a myopic buyer ignores the strategic link between the periods.

Further, in period 1 a myopic buyer will always purchases units from the lowest priced seller (as

long as this price is below V (1 + �)). There are two possible ways to generate a pure strategy

equilibrium with a myopic buyer. First, in equilibrium each seller charges �=2 in the �rst period

and the buyer purchases two units from one seller. Then, the other seller charges a price of V3 in

the second period and the buyer purchases one unit. Thus, the buyer pays a total of 2�. To see

that this is an equilibrium, �rst observe that the buyer indeed behaves optimally, on a period by

period basis. Furthermore, neither seller has a pro�table deviation. In period 1, if a seller lowers

his price below �=2, he then sells both units but obtains a lower pro�t. If he raises his price, he

sells no units in the �rst period but obtains a pro�t equal to V3 in the second.

There is, however, the possibility that the buyer may split his order (given myopia, the buyer

is indi¤erent between splitting or not) may be viewed as a weakness of the equilibrium described

just above. This can be easily addressed in the second possible way to establish an equilibrium, if

we introduce a smallest unit of account, � . The equilibrium has one seller charging �=2 � � and

the other seller charging �=2 in the �rst period and the buyer buying two units from the low price

seller. The seller that made no sales in the �rst period, charges V3 in the second period and the
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buyer purchases one unit from that seller. Thus, total payment in present value terms for the buyer

is 2�� 2� . Clearly, the equilibrium payo¤s are essentially the same under both approaches.

The underlying intuition for Corollary 2 is that a seller knows that if he sets a higher price than

his rival he cannot sell a unit in period one (and can only obtain a second period pro�t of V3). The

above comparison may provide a rationale for policies of large buyers that require purchasing in

each situation strictly from the lowest price seller. In particular, a government may often assume

the role of such a large buyer. It is often observed that, even when faced with scenarios like

the one examined here, governments require that purchasing agents buy only from the low-price

supplier, with no attention paid to the future implications of these purchasing decisions. While

there may be other reasons for such a commitment policy (such as preventing corruption and

bribes for government agents), our analysis suggests that by �tying its hands�and committing to

purchase from the seller that sets the lowest current price, the government manages to obtain a

lower purchasing cost across the entire purchasing horizon. We �nd, in other words, that delegation

to a myopic purchasing agent is bene�cial: it intensi�es competition among sellers.

Suppose that a buyer can acquire a seller after he has chosen his capacity. A further implication

of Proposition 2 is:

Corollary 3 The buyer has a strict incentive to acquire one of the sellers, that is, to become

vertically integrated.

This result is based on the following calculations. By vertically integrating, and paying the

equilibrium pro�t of a seller when there is no integration, �; the total price that the buyer will pay

is � +� since the other seller would charge the monopoly price V3 for a third unit (sold in period

2). This total payment is strictly less than the total expected payment (2�) that the buyer would

otherwise make in equilibrium. Thus, even though the other seller will be a monopolist, the buyer�s

payments are lower, since the seller that has not participated in the vertical integration has lower

pro�ts.11

11In our analysis, sellers use linear prices. It should not be too surprising that the application of nonlinear
pricing would lead to di¤erent results. This case would be relevant when a seller can price the sale of one
unit separately from the sale of two units. In an earlier working paper, Biglaiser and Vettas (2004) shows
that with a monopsonist under nonlinear pricing, there are unique pure strategy equilibrium payo¤s with
each seller making pro�t equal to �. In period 1, both sellers charge � for both a single unit and two units
and the buyer buys either two or three units. The ability of each seller to price each of his units separately
changes the strategic incentives, intensi�es price competition and allows us to derive an equilibrium where
the sellers make no positive rents.
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3.4 Initial capacity choices by sellers

Thus far, we have conducted the analysis assuming exogenous capacity levels, where each seller has

2 units. Now, suppose that their capacity choices are endogenous and other �rms are free to enter.

We claim that when the discounted value of the third unit, �, is signi�cant relative to the other

units, then there is an equilibrium in which each �rm acquires 2 units of capacity. The endogenous

capacity game is the following:

� Incumbents simultaneously choose their capacities

� Entrants observe incumbent capacity choices and simultaneously choose their capacities

� Firms that have positive capacity levels follow the timing as depicted in Figure 1

Assume that the cost of capacity is " per unit and focus on the limiting case of "! 0. We then

have the following proposition.

Proposition 3. If � � V=2, then the capacity game has an equilibrium where each incumbent

chooses 2 units of capacity and there is no entry.

To understand the basic forces at work, consider �rst whether entry is pro�table when the

incumbents each have two units of capacity. As shown in Proposition 1, each incumbent makes

a positive pro�t in a (2; 2) capacity con�guration. Entry, however, always results in Bertrand

competition where no �rm makes positive pro�ts. The smallest entry event is the (2; 2; 1) capacity

outcome, where one entrant has one unit of capacity. Even then, the market collapses to Bertrand

competition. Furthermore, any period 2 subgame yields 0 pro�ts for all sellers, since there is either

an excluded seller or a seller with excess capacity. Given this, equilibrium requires that all �rms

choose a price of 0 in period 1. Thus, entry is not pro�table.

In view of the positive pro�ts of incumbents, consider whether incumbent capacity expansion

is pro�table. Recall that in a (2; 2) capacity setting, each �rm can guarantee � in pro�ts because

the other incumbent cannot supply the entire buyer demand. When the con�guration is (3; 2), this

logic breaks down and the C2 �rm is more aggressive in period 1. In equilibrium, the buyer will

purchase 2 units from the C3 seller in period 1 more often than in (2; 2). In particular, if the C3

seller has a lower price than the C2 seller in period 1, then the buyer will always buy 2 units from

the lower priced seller: this preserves Bertrand competition in period 2 and there is no need for

the buyer to split the order and pay a premium to include the higher price �rm in the split. This
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makes the C2 seller price more aggressively and lowers the pro�ts of the C3 seller. In the mixed

strategy equilibrium for (3; 2), while the price supports intervals overlap, the price distribution of

C3 �rst order stochastically dominates that for C2: In equilibrium, the C3 seller has a strictly lower

payo¤ than a C2 seller in (2; 2). Thus, capacity expansion is never pro�table.

With respect to a capacity reduction, from (2; 2) to (2; 1), the pro�t assessment is more subtle.

When the value of the third unit is signi�cant, � � V=2, then the capacity reduction leads to lower

pro�ts for the C1 �rm. On the other hand, as � ! 0, the (2; 2) capacity equilibrium converges

to pure Bertrand competition, while in (2; 1) both �rms make strictly positive pro�ts. The reason

is that in the (2; 1) con�guration the C2 seller will never price below V (1 + �)=2, a lower bound

that does not depend on the value of the third unit. This is a consequence of buyer demand in

period 1: as long as C2 sets a price below V (1 + �), the buyer will purchase at least one unit from

C2. Depending on the price from C1, the C2 seller might also sell a second unit in the �rst period

but, since C1 only has 1 unit of capacity, C2 is guaranteed a pro�t of at least � on its second unit.

Hence, C2 can guarantee a payo¤ of at least V (1 + �) +� and, with 2 units of capacity, will never

price below 1=2 of V (1 + �) +�: Given this, the C1 seller can price at 1=2 of V (1 + �) +� and be

assured of a sale and hence a pro�t that remains positive even as � ! 0. Thus, as a measure of

competitive pressure, it is V rather than � that matters in (2; 1) when the third unit is of vanishing

value.

In contrast, it is � rather than V that functions as the �marginal value� with respect to

competitive pressure when the con�guration is (2; 2) when � > V=2. From Proposition 1, the

rate of pro�t growth in � is greater than 1. As a result, the pro�t di¤erence between (2; 2) and

(2; 1) for the C1 seller rises with �. As � crosses ��, this di¤erence is su¢ ciently large that it

dominates the security pro�t component of V (1 + �)=2 for the C1 seller in the (2; 1) con�guration.

Intuitively, additional capacity is valuable for the C1 seller when the marginal value of the third

unit is large. Thus, a (2; 2) con�guration is neiher susceptible to capacity deviations by incumbents

nor attractive to entrants.

4 Conclusion

Capacity constraints play an important role in oligopolistic competition. In this paper, we have

examined markets where both sellers and the buyer act strategically. Sellers have intertemporal

capacity constraints, as well as the power to set prices. The buyer decides which sellers to buy
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from, taking into consideration that current purchasing decisions a¤ect the intensity of competition

in the future. Capacity constraints imply that a pure strategy equilibrium fails to exist. Instead,

sellers play a mixed strategy with respect to their pricing, and the buyer may split the order.

Importantly, we �nd that the sellers enjoy higher pro�ts than they would have in an one-shot

interaction (or, equivalently, the competitive pro�t from satisfying residual demand). The buyer is

hurt, in equilibrium, by the ability to behave strategically over the two periods, since this behavior

allows the sellers to increase their prices above their rival�s and still sell their products. Thus, the

buyer has a strict incentive to commit not to buy in the future, or to commit to myopic, period-by-

period maximization (perhaps by delegating purchasing decisions to agents), as well as to vertically

integrate with one of the sellers.

This is, to our knowledge, one of the �rst papers to consider capacity constraints and strategic

buyer behavior in a dynamic setting. In an earlier working paper, Biglaiser and Vettas (2004),

examined the model when there were multiple buyers and allowed non-linear pricing. When there

are multiple buyers and linear pricing, they found that the sellers were able to capture rents above

the value of the marginal unit �. The idea is that if each of N buyers purchased 2 units in

period 1, and the sellers had equal remaining capacity (N of the original 2N units), then Bertrand

competition would ensue in period 2. This outcome involves both implicit coordination by buyers

in period 1 and aggregate order splitting. With non-linear pricing, they found in the monopsony

case that the sellers�payo¤s were held to the value of the marginal unit (�); interestingly, they

found that the sellers still retain rents in the duopsony case.

With regard to future work, it would be interesting to consider the case where the products of-

fered by the two sellers are di¤erentiated. Is there a distortion because buyers strategically purchase

products di¤erent from their most preferred ones, with the purpose of intensifying competition in

the future? Another direction to consider is an alternative price determination formulation. For

instance, sellers may be able to make their prices dependent on the buyers�purchasing behavior

e.g. by o¤ering a lower price to a buyer that has not purchased in the past: �loyalty discount�and

other quantity based price discrimination mechanisms.

Appendix
Period 2 subgames for (2,2) capacity. We verify the claims in the text for equilibria in

the period 2 subgames. Case (a): The buyer purchased 2 units. There are two subgames. If

(B;CH ; CL) = (1; 2; 0), then the unique outcome is pH = V3 and the buyer purchases 1 unit from

seller CH . If (B;CH ; CL) = (1; 1; 1), then the unique outcome is that both sellers charge 0, and the
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buyer purchases one unit (due to standard Bertrand analysis). Case (b): buyer purchased 1 unit.

The subgame is (B;CH ; CL) = (2; 2; 1). Demand is more subtle than in case (a), since the buyer

may purchase up to 2 units. Figure 5A shows the demand outcome for any pair of prices. We

need to show that the price distributions speci�ed in the text form a mixed strategy equilibrium.

By construction, any price in the support yields a payo¤ of V3 for seller C2 and V3=2 for seller C1.

Consider seller C2. At any price p < V3=2, the buyer purchases 2 units from C2 and the payo¤ is

2p which is less than V3. At any price p > V3, the buyer purchases 1 unit from seller C1. Thus,

C2 has a payo¤ of 0. Analogous arguments hold for seller C1. Thus, it is optimal for each seller to

price according to the speci�ed distributions. Case (c): buyer made no purchases. The subgame is

symmetric and (B;CH ; CL) = (3; 2; 2). The buyer may now purchase up to 3 units and Figure 5B

shows the demand outcome across prices. By construction, any price in the support yields a payo¤

of V3 for each seller. If a seller o¤ers a price p < V3=2, then the buyer purchases 2 units from that

seller and the payo¤ is 2p which is less than V3. At any price p > V3, the buyer purchases 2 units

from the other seller, but no units at price p. Thus, the deviating seller has a payo¤ of 0. Thus, it

is optimal for each seller to price according to the speci�ed distribution.

Proof of Lemma 1. Suppose, to the contrary, that we have an equilibrium at some (pL; pH).

Without loss of generality, we label prices so that pL � pH and refer to payo¤s �L and �H for

the L (low) and H (high) seller, respectively. First, observe that any price above V + 3�=2 leads

to a payo¤ of �. This is because, by demand in Figure 2, there are no period 1 sales for this

seller and, by Table 1, the period 2 payo¤ is V3. This implies that any price below �=2 is strictly

dominated since, with a capacity of 2 units, the payo¤ at such a price is less than �. Next, consider

pL > V +�. With pH � pL, we are in the No Purchases region for demand and we have �L = �.

But then L can pro�tably deviate to a price p where � < p < V +� and be assured of selling at

least 1 unit for a payo¤ greater than �.

This leaves candidate equilibria where �=2 � pL � V + �. Referring to demand in Figure 2,

we see that (pL; pH) cannot be interior to any of the three demand regions (above the 45� line).

In either of the Monopoly (for L) or the Split regions, a slight increase in pL would leave demand

unchanged while resulting in a larger payo¤ for L. In the No Purchases region, we know from above

that �L = � and, by pL � V + �, that pH � V + � holds for (pL; pH) in this region. Then, we

see that any price p < pH �� implies that the demand outcome at (p; pH) is Monopoly for L and

a payo¤ of 2p. But 2(pH ��) � 2V > �, so L has a pro�table deviation.

The remaining possibility is that (pL; pH) lies on one of the three boundary lines (above the 45�
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line) in Figure 2. The �rst case is the vertical line segment of pL = V +�=2 and pH � V + 3�=2

along which the buyer is indi¤erent between No Purchase, 1 unit from L, and 2 units from L. If the

buyer chooses No Purchases, then L has a payo¤ of �; at a purchase of 1 unit, L has a payo¤ of pL.

Since any price p < pL implies 2 units for L and a payo¤ of 2p, it must be that the buyer chooses 2

units from L with probability 1 in response to (pL; pH) since any other buyer choice would leave L

with a pro�table deviation. This implies that �H = �. But then H can pro�tably deviate to any

price p where V +�=2 < p < V + 3�=2 as this guarantees a sale of 1 unit and a payo¤ of at least

V +�=2 > �. Thus, there is no equilibrium in this case.

The second case is the boundary between the Split and No Purchases, pH = 2(V + �) � pL
for V +�=2 � pL � V +�. Note that L can guarantee a monopoly outcome by deviating to any

p < pH ��. Since

2(pH ��) = 2(2V +�� pL) > �L = pL , 4V + 2� > 3pL

on this boundary, we see from pL � V +� that the last inequality above is guaranteed by V > �.

Thus, L has a pro�table deviation.

The last case is the Split and Monopoly boundary, pH = pL + � for �=2 � pL � V + �=2,

where the buyer is indi¤erent between the two choices. As in the �rst case, L can guarantee a sale

of 2 units by o¤ering a lower price, although in this case any p < pL will su¢ ce. Since this yields a

payo¤ of 2p, it must be that the buyer chooses Monopoly for L with probability one. This implies

�H = �. But H can guarantee a sale of 1 unit by o¤ering any p < pL +�. Thus the lower bound

of �=2 � pL implies that H has a pro�table deviation and there is no equilibrium in this case.�

Proof of Proposition 1. For the distributions speci�ed in the text, we need only verify

that prices within the supports are optimal, while deviations to prices outside the supports are

unpro�table. The undiscounted period 2 subgame payo¤s are in the text in Table 1. From that

table, we compare payo¤s across the feasible set of buyer period 1 choices and arrive at the demand

pattern in Figure 2 in the text. We then construct the pro�t function by calculating demand at

pairs of prices, and take expectations over the rival�s price using the distribution speci�ed in the

proposition. First, we examine the case when � < ��. Calculating the pro�t function, we �nd

that for p � p

�(p) =

8<:
2p for p � p��
p [2� F (p+�)] for p�� � p � p+�
p� (p��)F (p��) for p+� � p � p

At prices above the equilibrium support, two cases arise depending on the buyer�s demand
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response. If p < V +�=2, equivalently
�
2 +

p
5
2 )� < V

�
, then

�(p) =

�
p� (p��)F (p��) for p � p � p+�
� for p+� � p

If p > V +�=2, equivalently
�
2 +

p
5
2 )� > V

�
, then

�(p) =

�
�+ p [F (2(V +�)� p)� F (p��)] for p � p � p+�
� for p+� � p :

For each p, we substitute for the F term as dictated by the distribution speci�ed in the propo-

sition. For any price in the support we readily verify that �(p) = p+� � �. For prices below the

support, �(p) is increasing and continuous in p with the limiting value of � as p " p. For prices

above the support, in each of the two cases, �(p) is initially decreasing and continuous in p before

collapsing to � at prices above p + � . In each case, the limiting value is � as p # p. Thus, the

equilibrium is con�rmed as all prices in the support yield � while all prices outside the support are

suboptimal.

Second, we examine the remaining case of � > ��. Calculating the pro�t function, we �nd

�(p) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

p [2� F (p+�)] for p�� � p � p� 2�

p(2� F (p)) for p� 2� � p � p��

p for p�� < p � p+�

p� (p��)F (p��) for p+� < p � p

�+ (p��) [F (2p� p)� F (p��)] for p < p � p+�=2

� for p+�=2 < p

As before, we substitute for the F distribution speci�ed in the proposition. Veri�cation of the

equilibrium then involves a straightforward, but lengthy comparison of payo¤s.

Finally, the e¢ ciency property and payo¤ outcomes were demonstrated in the text. �

Ine¢ cient equilibria for large � in the (2; 2) capacity con�guration. For � su¢ ciently

large, there is a set of ine¢ cient equilibria. Suppose � > 4V (3� 2
p
2) u :69V . Then the following

distribution F (p) = (p��)=(2V +��p) for p 2
�
p; p
�
, where p = 2(V +�)�p and p 2 (G(�); 2�),

where G(�) = (V ��=4)2 =V +�, is an equilibrium. The support is a square that is centered on

the point (V +�; V +�) and always less than � in width. Referring back to Figure 2 on demand,

we see that the buyer either buys a unit from each seller or buys no units in period 1. Thus, the

equilibrium is ine¢ cient. A seller�s payo¤, p, is bounded above by 2� which, in turn, is at least
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p
V� less than a seller�s payo¤ in the e¢ cient equilibrium.

Proof of Proposition 3. First, we show that (2; 2) is not susceptible to entry. Consider a

(2; 2; 1) con�guration. In any period 2 subgame every seller has a payo¤ of 0. This is because every

pattern of period 2 demand purchases results in either an excluded seller or a seller with excess

capacity, so that Bertrand logic applies in the subgames. This implies that every seller has a payo¤

of 0 in the overall game. Suppose 3 units are purchased in period 1. Since the buyer has the option

of not buying a 3rd unit in period 1 and instead acquiring that unit next period for a price of 0,

the buyer will not pay a positive price on each unit purchased. Thus, some seller o¤ers a price of

0 and makes a sale. If this is seller C1 we are done. If it is one of the C2 sellers, then the above

argument (for a 3rd unit) holds and the buyer will never pay a positive price. Now suppose 2 units

are purchased in period 1. Therefore, some seller has no sales in period 1 and has 0 payo¤ overall,

since there are no pro�ts in period 2. But then no seller can make a sale at a positive price in

period 1, since the excluded seller can pro�tably undercut. Suppose that one unit is purchased in

period 1. With two excluded sellers, the previous undercutting argument applies. Finally, if no

sales occur in period 1, then the absence of pro�ts in period 2 implies that all sellers have a payo¤

of 0 overall. Thus, given a (2; 2) con�guration, entry is never pro�table.

Now, consider the capacity choices of incumbent sellers. We must show that it is not pro�table

to add or to reduce capacity. Let �i denote the equilibrium pro�t of seller Ci when the capacity

con�guration is (2; i). It is su¢ cient to analyze the addition or subtraction of one unit of capacity

(i = 1; 3). This is since i = 0 automatically has a payo¤ of 0 and as we note below, choices i � 3

share a common equilibrium payo¤. We will show that �2 > �3 and �2 > �1. First, we �nd �3

and compare and then we do the same with �1.

Consider (3; 2) the buyer has two sellers to choose from and up to 3 units of demand in period 1,

this generates 7 distinct subgames in period 2. Working through all the subgames, the equilibrium

payo¤s are in Table 1.

Table 2: Discounted Period 2 incremental payo¤s for (3; 2) capacity game
Period 2 (B;H;L) con�guration Buyer Payo¤ Seller CH payo¤ Seller CL payo¤

(3; 3; 2) 2(�V ��=3) � 2�=3

(2; 2; 2) �V +� 0 0

(2; 3; 1) �V ��=2 � �=2

(1; 2; 1) � 0 0

(1; 3; 0) 0 � 0

All of these re�ect pure strategy equilibria except for (3; 3; 2) and (2; 3; 1) which are mixed.
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See Figures 5C and 5D.

Moving to period 1, the buyer demand is determined by optimizing over how many units to

purchase and from whom given period 2 payo¤s and price o¤ers pi and pj . See the demand pattern

in Figure 6A.

The mixed strategy equilibrium for (3; 2) when � � ��(3;2) �
�p

5�1
2

�
V is given by

F2(p) =

8>>>><>>>>:
1� (�3 ��)=p for p

2
� p � p

3

2� �3=p for p
3
� p < p2

1 for p = p2

F3(p) =

8>>>><>>>>:
1� �2=p for p

3
� p < p2

1� �2=p for p2 � p = p2 +�

2� �2=(p��) for p
2
+� � p � p3

where p
2
= �V

V+� , p2 = V , p3 = �, p3 = 2�: Pro�t for the C2 seller is p3 and pro�t for the C2

seller is p
2
+ �. We note that F2 has an atom at p2 and that F3 has a �at region. As with the

(2; 2) con�guration, veri�cation of this equilibrium (as well as the 3 subsequent equilibria) involves

checking that prices outside of the supports are not pro�table relative to the equilibrium payo¤.

See Figure 6B.

The mixed strategy equilibrium for (3; 2) when � < ��(3;2) is given by

F2(p) =

8<:
1� (�3 ��)=p for p

2
� p � p

3

2� �3=p for p
3
� p � p2

F3(p) =

8<:
1� �2=p for p

3
� p < p2

2� �2=(p��) for p
2
+� � p � p3

where p
2
=
�p

5�1
2

�
�, p2 =

�p
5+1
2

�
�, p

3
= �, and p3 = 2�: Pro�t for the C2 seller is p3 and

pro�t for the C2 seller is p2 +�. See Figure 6C.

To verify that a C2 seller has no incentive to add capacity, we compare pro�t in the (2; 2)

con�guration with the pro�t of a C3 in the (3; 2) con�guration. It is immediate that �� < ��(3;2).

This implies that there are 3 cases to consider when comparing pro�ts. The result then follows

immediately by routine calculations.
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Now, consider the (2; 1) con�guration. The buyer has two sellers to choose from and up to 3

units of demand in period 2. Working through all the subgames, the equilibrium payo¤s are in

Table 3.

Table 3: Discounted Period 2 incremental payo¤s for (2; 1) capacity game
Period 2 (B;H;L) con�guration Buyer Payo¤ Seller CH payo¤ Seller CL payo¤

(3; 2; 1) and V3 � V=2 �V �� 2� �

(3; 2; 1) and V3 < V=2 �V=2 �V �V=2

(2; 1; 1) �V �� � �

(2; 2; 0) and V3 � V=2 �V �� 2� 0

(2; 2; 0) and V3 < V=2 0 �V 0

(1; 1; 0) 0 � 0

All of these re�ect pure strategy equilibria except for (3; 2; 1) when V3 < V=2 which is mixed

(see Figure 5E).

Moving to period 1, the buyer demand is determined by optimizing over how many units to

purchase and from whom given period 2 payo¤s and price o¤ers pi and pj . Demand can be seen in

Figures 7A and 7B for each of the V3 cases.

The mixed strategy equilibrium for (2; 1) when � � ��(2;1) � V=2 is given by

F1(p) =
n
2� V

p�� for p � p � p

F2(p) =

(
1� V

2(p��) for p � p < p
1 for p = p

where p = V
2 +�, and p = V +�: We note that there is an atom at p for F2. The pro�ts for

the C1 seller are p and for the C2 seller they are 2p.

The mixed strategy equilibrium for (2; 1) when � < ��(2;1) is given by

F1(p) =

8<:
2� (�2 � 2�)=(p��) for p � p < p

1 for p = p

F2(p) =

8<:
1� (�1 ��)=(p��) for p � p � p

1 for p = V (1 + �)

where p = V (1+�)+�
2 , and p = V +�: The pro�ts are p for the C1 seller and 2p for the C2 seller.

We observe that there are atoms at the top of both supports and that there is a gap in F2 support

below p. It is immediate that �� > ��(2;1). This implies that there are 3 cases to consider when
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comparing pro�ts. The result then follows immediately by routine calculations whenever � � V=2.

See Figures 7A and 7B for the equilibrium supports.

There is no entry in a (2; 1) con�guration. If an entrant enters and installs a unit of capacity,

then the following is an equilibrium in period 1. Each of the �rms who have a unit of capacity

charge 0 and the �rm with 1 unit of capacity charges �, with the buyer buying both units at a

price of 0 and the seller with 2 units of capacity selling a unit in period 2 for V3. To see that this

is an equilibrium, examine seller deviations. If one of the sellers who charges 0 in the putative

equilibrium raises its price, then the buyer will buy 1 unit at a price of 0 and one unit at a price

of �. This gives the buyer a higher payo¤ than buying units from the seller who deviated, since

there will be Bertrand competition between 2 sellers each trying to sell one unit in period 2. Thus,

the deviating seller does not bene�t. If the seller with 2 units of capacity lowers its price the buyer

will buy 1 unit from it and one from one of the sellers charging 0. Again, the price in period 2 will

be 0 due to Bertrand competition. Thus, this seller lowers his payo¤ by lowering its price. Clearly,

the seller cannot bene�t by raising its price above �, since the buyer will still not buy from it in

period 1. Thus, we have an equilibrium and entry is not possible.

25



References

[1] Allen, B., R. Deneckere, T. Faith, and D. Kovenock (2000) �Capacity precommitment as a

barrier to entry: a Bertrand - Edgeworth approach�, Economic Theory, 15, 501-530.

[2] Anton, J.J. and D. Yao (1989) �Split Awards, Procurement and Innovation, RAND Journal

of Economics, 20, 538-552.

[3] Anton, J.J. and D. Yao (1992) �Coordination in split award auctions�, The Quarterly Journal

of Economics, May, 681-707.

[4] Besanko, D. and U. Doraszelski (2004) �Capacity dynamics and endogenous asymmetries in

�rm size�, RAND Journal of Economics, 35(1), 23-49.

[5] Bhaskar V. (2001) �Information and the exercise of countervailing power �, working paper,

University of Essex.

[6] Biglaiser, G. and N. Vettas (2004) �Dynamic price competition with capacity constraints and

strategic buyers�, CEPR discussion paper no. 4315.

[7] Cabral L. M. B. and M. H. Riordan (1994) �The learning curve, market dominance and

predatory pricing�, Econometrica, 62, 57-76.

[8] Compte O., F. Jenny, and P. Rey (2002) �Capacity constraints, mergers and collusion�, Eu-

ropean Economic Review, 46, 1-29.

[9] Dasgupta. P. and E. Maskin (1986) �The existence of equilibrium in discontinuous economic

games, II: Applications�, Review of Economic Studies, LIII, 27-41.

[10] Dobson, P. and M. Waterson (1997) �Countervailing power and consumer prices�, Economic

Journal, 107, 418-430.

[11] Dudey, M. (1992) �Dynamic Edgeworth-Bertrand competition�, Quarterly Journal of Eco-

nomics, 107(4), 1461-1477.

[12] Dudey, M. (2009) �Quantity pre-commitment and price competition yield Bertrand outcomes�,

working paper, Rice University.

[13] Garcia, A., J. D. Reitzes and E. Stacchetti (2001) �Strategic Pricing when Electricity is Stor-

able�, Journal of Regulatory Economics, 20(3), 223-247.

26



[14] Gehrig, T. (1990) Game theoretic models of price discrimination and �nancial intermediation,

Doctoral thesis, London School of Economics.

[15] Ghemawat, P. (1997) Games Businesses Play, Cambridge, MIT Press.

[16] Ghemawat, P. and A.N. McGahan (1998) �Order backlogs and strategic pricing: the case of

the U.S. large turbine generator industry�, Strategic Management Journal, 19, 255-268.

[17] Greer, W.R. Jr and S.S. Liao (1986) �An analysis of risk and return in the defense market: its

impact on weapon system competition�, Management Science, 32(10), 1259-1273.

[18] Griesmer, J. and M. Shubik (1963) �Towards a Study of Bidding Processes, Part II: Games

with Capacity Limitations,�Naval Research Logistics Quarterly, 10, 151-174.

[19] Inderst, R. and C. Wey (2003) �Bargaining, mergers, and technology choice in bilaterally

oligopolistic industries�, RAND Journal of Economics, 34(1), 1-19.

[20] Inderst, R. (2008) �Single Sourcing and Multiple Sourcing�, RAND Journal of Economics,

39(1), 199-213.

[21] Jofre-Bonet, M. and M. Pesendorfer (2003) �Estimation of a dynamic auction game�, Econo-

metrica, 71 (5), 1443-1489.

[22] Kreps, D. M. and J. A. Scheinkman (1983) �Quantity precommitment and Bertrand competi-

tion yield Cournot outcomes�, Bell Journal of Economics, 14(2), 326-337.

[23] Lambson, V.E. (1987) �Optimal penal codes in price-setting supergames with capacity con-

straints�, Review of Economic Studies, 54, 385-397.

[24] Lewis, T. R. and H. Yildirim (2002) �Managing dynamic competition�, American Economic

Review, 92, 779-797.

[25] Osborne, M. J. and C. Pitchik (1986) �Price competition in a capacity constrained duopoly�,

Journal of Economic Theory, 38, 238-260.

[26] Riordan, M. H. and D.E.M. Sappington (1987) �Awarding monopoly franchises�, American

Economic Review, 77, 375-387.

27



   

 

    

 

     

Figure 5: Legend

Capacity (2, 2) Subgames:
Figure 5A: (B, CH, CL) = (2, 2, 1)
Figure 5B: (B, CH, CL) = (3,2,2)

Capacity (3, 2) Subgames:
Figure 5C: (B, CH, CL) = (2, 3, 1)
Figure 5D: (B, CH, CL) = (3, 3, 2)

Capacity (2, 1) subgame:
Figure 5E: (B, CH, CL) = (3, 2, 1)
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